Applications of Fourier Series and Fourier Transform in Communication System

I have learned about the Fourier transform, but I do not have a deep understanding of it.

enter image description here

I heard that it is used in radios, butI don't know how and why. Can anyone explain it in a very detailed manner? What are other applications of the Fourier transform in communications?

EDIT 1:

I got a little bit more understanding about Fourier series and Fourier transformation by reading answer section/comments and googling things so many times.But,I don't know I am correct or wrong. If I am wrong, please comment below.

The general form of sinusoid .

enter image description here

That means sinusoids can be defined using amplitude ,frequency and phase . Sinusoids can be represented in complex plain using Euler's formula.

enter image description here Fourier series is a method to express an arbitrary periodic function as a sum of cosine terms.

enter image description here enter image description here

C – a complex constant That is complex form of Fourier series. enter image description here

That is general form of Fourier series.

enter image description here

EDIT 2:

General form of Fourier series is a simplification of Fourier series . enter image description here

Fourier transformation is a mathematical procedure for converting a signal in time domain to a complex number in frequency domain.

enter image description here

enter image description here

enter image description here

From http://www.falstad.com/fourier/ site

enter image description here

enter image description here

Amplitude spectrum can be plotted by getting absolute value of complex valued function against frequency and Phase spectrum can be plotted by getting angle of complex valued function against frequency.

EDIT 3:

Continuous Signal and Discrete signals

A continuous signal is a function of the time which is continuous (there are no breaks in signal).

A discrete signals is a signal whose value is taken at discrete measurements.

enter image description here

FFT-Fast Fourier Transformation

FFT is an algorithm which computes the Discrete Fourier Transformation of a sequence .

I coded two python scripts for Continuous Fourier Transformation and Discrete Fourier Transformation .But, there is a significant difference between phase spectrums .I don't know that is because of discrete values or a problem of the script.

For Continuous Fourier Transformation

          import matplotlib.pyplot as plt import numpy from scipy.integrate import quad  def comp_quad(func, a, b, **kwargs):     def real(x,g,f):         return numpy.real(func(x,g,f))     def imag(x,g,f):         return numpy.imag(func(x,g,f))     real_p = quad(real, a, b, **kwargs)     imag_p = quad(imag, a, b, **kwargs)     return (real_p[0] + 1j*imag_p[0], real_p[1:], imag_p[1:])  def con_four(a,func,g):     return  (1/2)*numpy.exp((-1)*(1j)*g*a)*func(a)  def square_wave(a):     A=2     T=2     return (-1)*A*((a%T)<T/2)+(A)*((a%T)>=T/2)   fig,(ax1,ax2)=plt.subplots(nrows=2,ncols=1) fig1,(ax3,ax4)=plt.subplots(nrows=2,ncols=1)   #Wave r=[x/100 for x in range(200)] ax1.plot(r,[square_wave(w) for w in r],color="darkblue") ax1.set_xlabel("Time(s)") ax1.set_ylabel("Amplitude") ax1.set_title("Signal") ax1.grid()   #Fourier Transform freq=[e/2 for e in range(0,100)] ang=[x*2*numpy.pi for x in freq] y=[comp_quad(con_four,0,2,args=(square_wave,c,))[0] for c in ang] #Amplitude l=[abs(t)*2 for t in y]  #Normalize amplitude l[0]=l[0]/2 #For DC component(frequency 0) ax2.plot(freq,l,color="red") ax2.set_xlabel("Frequency(Hz)") ax2.set_ylabel("Amplitude") ax2.set_title("Amplitude Spectrum") ax2.grid() #Phase k=[0 if (abs(j)<0.001) else (numpy.pi/2)+numpy.angle(j) for j in y]  ax3.plot(freq,k,color="red") ax3.set_xlabel("Frequency(Hz)") ax3.set_ylabel("Phase") ax3.set_title("Phase Spectrum") ax3.grid()    #Reconstruction d=[sum([l[i]*numpy.sin(2*numpy.pi*freq[i]*t+(k[i])) for i in range(len(freq))]) for t in r] ax4.plot(r,d,color="green") ax4.set_xlabel("Time(s)") ax4.set_ylabel("Amplitude") ax4.grid()   plt.show()                  

enter image description here

For Discrete Fourier Transformation

          import numpy as np from scipy import fftpack import matplotlib.pyplot as plt import cmath   def square_wave(a):     A=2     T=2     return (-1)*A*((a%T)<T/2)+(A)*((a%T)>=T/2)      fig,(ax1,ax2)=plt.subplots(nrows=2,ncols=1) fig1,(ax3,ax4)=plt.subplots(nrows=2,ncols=1) fig2,ax5=plt.subplots(nrows=1,ncols=1)  #wave p=[c/100 for c in range(200)] sig=[square_wave(x) for x in p] ax1.plot(p,sig,color="darkblue") ax1.set_xlabel("Time(s)") ax1.set_ylabel("Amplitude") ax1.set_title("Signal") ax1.grid()  #Discrete Fourier Transform sig_fft=fftpack.fft(sig) #Amplitude Spectrum Amplitude=2*((np.abs(sig_fft)/len(sig))[0:int(len(sig)/2)]) #Normalize amplitude Amplitude[0]=Amplitude[0]/2  #For DC component sample_freq=fftpack.fftfreq(len(sig),d=0.01)[0:int(len(sig)/2)] ax2.plot(sample_freq,Amplitude,color="red") ax2.set_xlabel("Frequency(Hz)") ax2.set_ylabel("Amplitude") ax2.set_title("FFT-Amplitude Spectrum") ax2.grid() #Phase Spectrum k=[0 if (abs(j)<0.01) else (np.pi/2)+np.angle(j) for j in sig_fft[0:int(len(sig)/2)]]  ax3.plot(sample_freq,k,color="red") ax3.set_xlabel("Frequency(Hz)") ax3.set_ylabel("Phase") ax3.set_title("FFT-Phase Spectrum") ax3.grid()   #Reconstruction d=[sum([Amplitude[i]*np.sin(2*np.pi*sample_freq[i]*t+(k[i])) for i in range(len(sample_freq))]) for t in p] ax4.plot(p,d,color="green") ax4.set_xlabel("Time(s)") ax4.set_ylabel("Amplitude") ax4.grid()  #IFFT rf=fftpack.ifft(sig_fft) ax5.plot(p,rf,color="brown") ax5.set_title("IFFT") ax5.set_xlabel("Time(s)") ax5.set_ylabel("Amplitude") plt.show()                  

enter image description here enter image description here

Applications of Fourier Series and Fourier Transform in Communication System

Source: https://electronics.stackexchange.com/questions/554230/what-are-the-applications-of-the-fourier-transform-in-communications

0 Response to "Applications of Fourier Series and Fourier Transform in Communication System"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel